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Familial Mediterranean Fever (FMF) is the first described and most 
prevalent monogenic autoinflammatory periodic fever syndrome 
worldwide. The disease is caused by pathogenic variants in the MEFV 
(Mediterranean fever) gene, which lead to dysregulated innate immune 
responses and a persistent hyperinflammatory state. Despite extensive 
genetic characterization, the molecular mechanisms linking MEFV 
mutations to aberrant inflammation remain incompletely understood. 
Moreover, substantial clinical heterogeneity—manifested as incomplete 
penetrance, variable expressivity, and modulation by additional 
autoinflammatory genes—indicates that FMF pathogenesis extends 

beyond classical Mendelian inheritance. Emerging evidence suggests 
that epigenetic mechanisms, including DNA methylation, histone 
modifications, and microRNA regulation, may contribute to phenotypic 
variability, disease severity, and therapeutic response; however, available 
data are limited and occasionally conflicting. This review provides a 
comprehensive and up-to-date overview of the genetic, molecular, and 
epigenetic factors implicated in FMF, highlights unresolved controversies, 
and proposes future research priorities aimed at elucidating disease 
mechanisms and improving clinical management.

 Serdal Ugurlu1,  Ozgur Can Kilinc1,  Ilker Karacan2,  Kerem Parlar1

INTRODUCTION

Familial Mediterranean Fever (FMF) is a monogenic autoinflammatory 
disorder predominantly affecting individuals of Mediterranean 
descent, including Turks, Armenians, Arabs, and non-Ashkenazi Jews.1 
It is the most common hereditary periodic fever syndrome worldwide 
and is characterized by recurrent episodes of fever, serositis, and 
arthritis (Figure 1). Among its complications, AA amyloidosis is the 
most serious and represents the leading cause of mortality in FMF 
patients. Daily prophylactic administration of colchicine remains the 
cornerstone of treatment, effectively preventing the development of 
amyloidosis.2

Pathogenic variants in the MEFV gene play a central role in FMF 
pathogenesis. This gene encodes pyrin, a protein critical for regulating 
the inflammatory response by modulating the inflammasome 
complex.2,3 Despite extensive research, the precise mechanisms 
underlying pyrin inflammasome overactivation in FMF remain 
incompletely understood.

This review provides an updated and comprehensive overview of the 
genetics, epigenetics, and pathogenesis of FMF.

FMF results from pathogenic variants in the MEFV gene, which encodes 
the pyrin protein.4,5 These variants lead to a gain-of-function effect in 
pyrin.6 Pyrin functions as an inflammasome-forming protein.7

Inflammasomes are multiprotein complexes that play a critical role 
in the innate immune response to pathogens.8 Unlike the adaptive 
immune system, the innate immune system does not recognize 
pathogen-specific molecules; instead, it detects conserved molecular 
patterns shared by pathogens—pathogen-associated molecular 
patterns (PAMPs)—or alterations arising from cellular damage, 
known as damage-associated molecular patterns (DAMPs).9 By 
monitoring the cytosol, inflammasomes trigger an inflammatory 
response upon detection of PAMPs or DAMPs.10

One notable inflammasome is the pyrin inflammasome. Because 
pyrin inflammasome overactivation underlies FMF pathogenesis, this 
review first summarizes its structure, function, and activation, along 
with recent advances in the field. Subsequently, we examine the 
pyrin inflammasome specifically in patients with FMF, highlighting 
emerging findings and hypotheses that provide new insights into 
disease pathophysiology. This discussion is followed by an overview of 
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the intriguing relationship between FMF and Yersinia, a connection 
that has reshaped current understanding of FMF epidemiology 
and biology. Finally, we address the genetic landscape of FMF and 
explore epigenetic regulatory mechanisms that may contribute to 
phenotypic variability.

PYRIN INFLAMMASOME

Structure

The basic structure of an inflammasome consists of a sensor that 
detects pathogenic insults, an adaptor protein that bridges the 
sensor and the executioner, and an executioner that initiates 
the inflammatory cascade.11 In the pyrin inflammasome, these 
components correspond to pyrin (sensor), [apoptosis-associated 

(ASC) speck-like protein containing a caspase recruitment domain 
(CARD)] (adaptor), and caspase-1 (executioner), respectively.

Pyrin, also known as tripartite motif–containing protein 20 or 
marenostrin, is a pattern recognition receptor that monitors cytosolic 
homeostasis and senses alterations within the cytosol, referred to 
as homeostasis-altering molecular processes.12 Structurally, pyrin 
comprises an N-terminal pyrin domain (PYD), a zinc finger domain 
(B-box), a central helical scaffold (CHS), and a C-terminal B30.2 
domain (Figure 2).13,14

The PYD domain of pyrin interacts with the PYD domain of ASC, 
promoting ASC oligomerization. Oligomerized ASC subsequently 
engages procaspase-1 via its CARD domain, leading to autocatalytic 
cleavage and activation of caspase-1.15 

FIG. 1. Clinical features of Familial Mediterranean Fever.	
Created in BioRender.com.
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Function and activation

The activation of the pyrin inflammasome under physiological 
conditions is illustrated in Figure 3.

Under normal conditions, pyrin remains in an inactive state, 
which is maintained by the small GTPase RhoA.7 RhoA functions 
as a “guard” of the pyrin inflammasome.7 Rather than interacting 
directly with pyrin, RhoA inhibits inflammasome activation through 
the serine–threonine protein kinases PKN1 and PKN2.16 Specifically, 
RhoA activates PKN1 and PKN2, which then bind to pyrin and 
phosphorylate serine residues at positions 208 and 242.16,17 This 
phosphorylation facilitates the binding of the 14-3-3 chaperone to 
pyrin, thereby preventing pyrin inflammasome activation.16 

Bacteria and bacterial toxins, such as the clostridial toxin TcdB, can 
alter RhoA activity, effectively “disarming” this regulatory guard.7 
This disruption reduces pyrin phosphorylation and the binding 
of 14-3-3 proteins to pyrin.7 The decreased association of 14-3-3 
proteins relieves pyrin inhibition, leading to activation of the pyrin 
inflammasome. This mechanism represents the primary pathway 
through which the pyrin inflammasome senses bacterial toxins and 
homeostatic disturbances.16

Upon activation, pyrin interacts with ASC via homotypic PYD–PYD 
interactions, promoting ASC oligomerization.16,18 The CARD domain 
of oligomerized ASC then stimulates autocatalytic cleavage of 
procaspase-1 into active caspase-1, the principal executioner of 
inflammasome-induced inflammatory responses. Active caspase-1 
cleaves proinflammatory cytokines interleukin (IL)-1β and IL-18 into 
their mature forms, triggering an exaggerated immune response 
largely mediated by neutrophils.19,20

In addition to cytokine activation, caspase-1 cleaves the pore-
forming protein Gasdermin-D, producing its active form and 
inducing inflammatory cell death, known as pyroptosis.21 Enhanced 
pyroptosis further amplifies inflammation by promoting the release 
of cytokines and alarmins such as S100A8/A9 and S100A12.22 Recent 
studies have also demonstrated that neutrophil extracellular traps 
are formed as a consequence of heightened neutrophil activation in 
patients with FMF.23

PYRIN INFLAMMASOME IN FAMILIAL MEDITERRANEAN 
FEVER

Figure 4 summarizes the current understanding of the pyrin 
inflammasome in FMF. Despite advances in elucidating pyrin 
inflammasome activation and downstream signaling, the precise 
mechanisms underlying its overactivation in patients with FMF 
remain incompletely understood.7,16 Current evidence suggests 
the involvement of distinct yet interconnected regulatory nodes, 
including the B30.2 domain, cytoskeletal dynamics, and autophagic 
pathways.12,24,25

Structural regulation: the B30.2 and central helical scaffold 
domains

Most FMF-causing variants are located in exon 10 of the MEFV 
gene, which encodes the B30.2 domain of pyrin.13 Although 
the precise role of the B30.2 domain in pyrin inflammasome 
activation remains unclear, Weinert et al.24 identified a shallow 
cavity containing hydrophobic clusters within B30.2, which they 
proposed as a potential ligand-binding site. They further observed 
that approximately two-thirds of pathogenic variants in the B30.2 
coding region cluster near this cavity, suggesting that these variants 
likely alter its ligand-binding activity.24

FIG. 2. Pyrin protein structure.
The structure of  pyrin protein with highlighted subdomains is illustrated. The part highlighted with green indicates PYD domain, which is encoded by Exon-3. The part highlighted with 

yellow illustrates CHS domain, which is encoded by Exon-6. The part highlighted by red demonstrates B-box domain, which is encoded by Exon-2. The part highlighted with blue indicates 

B30.2 domain, which is encoded by Exon-10. PYD, pyrin domain; CHS, central helical scaffold; B-box, zinc finger domain.
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Chae et al.25 and Arakelov et al.26 reported that the B30.2 domain 
directly interacts with caspase-1, exerting an inhibitory effect on 
its activation. Studies indicate that FMF-causing variants in B30.2 
weaken this interaction, thereby relieving caspase-1 inhibition.27 
Another study demonstrated that β2-microglobulin binds the 
B30.2 domain and promotes inflammasome activation, leading to 
caspase-1 activation.28 This study also identified a negative feedback 
mechanism mediated by the p20 subunit of caspase-1, which binds 
B30.2 and reduces pyrin’s interaction with β2-microglobulin. FMF-
associated MEFV variants were shown to diminish this inhibitory 
effect, contributing to enhanced inflammasome activation.28

Recently, Chirita et al.14 demonstrated that the B30.2 domain is 
dispensable for pyrin activation. Instead, it negatively regulates 
pyrin activation, acting downstream of pyrin dephosphorylation 
and upstream of ASC speck oligomerization.14 Weinert et al.24 
showed that the remaining one-third of B30.2 variants cluster 
opposite the peptide-binding cavity. They hypothesized that 
these variants alter the spatial orientation between B30.2 and the 
central coiled-coil domain (a subdomain of CHS) and subsequently 
confirmed this hypothesis in a follow-up study.29 Chirita et al.14 
further demonstrated that variants in exons 3–8, which encode the 
CHS domain, mimic the effects of FMF-causing B30.2 variants. They 

also proposed that CHS and B30.2 function together to negatively 
regulate caspase-1 activation.14

Taken together, these findings suggest that B30.2 acts as a negative 
regulator of pyrin inflammasome activation in coordination with 
CHS. FMF-causing pathogenic variants located in exons 10 and 3–8 
disrupt this inhibitory mechanism, resulting in pyrin inflammasome 
overactivation. Although the negative regulatory roles of B30.2 and 
CHS have been demonstrated, the precise molecular mechanisms 
remain unclear. Elucidating this regulation is of critical importance, 
as it may enhance understanding of FMF pathogenesis and inform 
the development of novel therapeutic strategies.

Cytoskeletal regulation and motility

Colchicine, the primary treatment for FMF, is well known for its 
effects on the cytoskeleton, prompting researchers to investigate 
the potential role of cytoskeletal dynamics in FMF pathogenesis. 
Figure 5 illustrates cytoskeletal organization in FMF. The pyrin 
inflammasome has long been recognized to associate with 
cytoskeletal components.

In 2001, Mansfield et al.30 demonstrated that pyrin colocalizes 
with microtubules and the actin cytoskeleton via its N-terminal 

FIG. 3. Pyrin inflammasome activation under physiological conditions.
Under normal conditions, RhoA acts as a guard of  pyrin inflammasome. RhoA activates PKN1 and PKN2 which phosphorylate pyrin at serine residues 242 and 208 located between 

PYD and B-Box. Phosphorylated pyrin has a higher affinity for chaperone protein 14-3-3 and binds it, resulting in inactivation of  pyrin inflammasome. In pathogenic conditions where 

there is a toxin release or disruptions in the cytosolic homeostasis, RhoA gets inactivated and PKNs cannot be activated, preventing pyrin phosphorylation. Dephosphorylated pyrin does 

not bind 14-3-3 and remains active. Activated pyrin interacts with ASC through its PYD domains, leading to ASC oligomerization. Oligomerized ASC interacts with procaspase-1 through 

its CARD domains, resulting in the activation of  procaspase-1 to caspase-1. Activated caspase-1 cleaves proinflammatory cytokines and GSDMD to their active forms. Activated GSDMD 

forms pores on the cellular membrane through which the proinflammatory cytokines and alarmins (S100A8/A9) are released. Created in BioRender.com. PYD, pyrin domain; B-box, zinc 

finger domain; GSDMD, gasdermin-D.
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domain. Subsequently, Shoham et al.31 reported that pyrin interacts 
with proline-serine-threonine phosphatase-interacting protein 1 
(PSTPIP1), a regulator of cytoskeletal organization. In addition to its 
role in cytoskeletal regulation, PSTPIP1 binds the B-box domain of 
pyrin, promoting pyrin activation downstream of dephosphorylation 
and upstream of ASC oligomerization.32 

In 2016, Van Gorp et al.33 and Gao et al.34 confirmed that pyrin 
interacts with microtubules and demonstrated that an intact 
microtubular network is essential for both pyrin dephosphorylation 
and subsequent activation of the pyrin inflammasome. They33,34 

further showed that microtubules function downstream of 
pyrin dephosphorylation and upstream of ASC oligomerization. 
Moreover, Van Gorp et al.33 and Magnotti et al.35 reported that, 
although FMF-associated pathogenic variants do not disrupt the 
physical interaction between pyrin and microtubules, these variants 
circumvent the requirement for an intact microtubular system in 
pyrin inflammasome activation.

Recently, CDC42 (cell division cycle 42), a well-established regulator 
of the cytoskeleton36,37 was identified as a critical component of 
the pyrin pathway. Mechanistically, CDC42 promotes microtubule-
dependent pyrin assembly, acting downstream of pyrin 
dephosphorylation and upstream of ASC oligomerization.38,39 The 
essential role of CDC42 in FMF pathogenesis is further supported by 
evidence showing that CDC42 deletion prevents inflammatory cell 
death in disease models.39

Furthermore, pyrin inflammasome activation appears to regulate 
inflammatory cell migration. Several studies have shown that pyrin 
colocalizes with polymerizing actin at the leading edge of migrating 
monocytes.40,41 The functional significance of this interaction is 
underscored by pyrin knockdown models, which exhibit impaired 
migratory capacity.41 Recently, Akbaba et al.42 reported that pyrin 
inflammasome activation specifically enhances inflammatory cell 
migration in FMF patients, distinguishing them from patients with 
cryopyrin-associated periodic syndromes (CAPS) and healthy controls.

FIG. 4. Pyrin inflammasome in FMF.
Some of  the pathogenic variations (yellow arrow) occurring in the Exon-10 of  MEFV gene modifies the ligand binding activity of  B30.2, while some (green arrow) of  them modify the 

spatial orientation of  B30.2 with CHS. On the other hand, pathogenic variations occurring in the Exon-3-8, which encodes CHS mimic the variations occurring in the Exon-10. B30.2 has a 

direct inhibitory effect on caspase-1 activation, which is removed by FMF-causing pathogenic variations. P20 subdomain of  caspase-1 directly interacts with B30.2, resulting in inhibition 

of  caspase-1 activation and leads to a negative feedback mechanism. This negative feedback is removed by FMF-causing pathogenic variations. Pyrin itself  can be a substrate and 

cleaved by caspase-1. The degradation products of  pyrin stimulate the degradation of  IkB complex to NFkB, further exacerbating the inflammatory situation. Pyrin interacts with certain 

inflammasome products thorough PYD domain and with autophagy drivers, acting like a receptor of  autophagy. This activity is also disrupted by FMF-causing pathogenic variations. 

Created in BioRender.com. PYD, pyrin domain; CHS, central helical scaffold; B-box, zinc finger domain; FMF, Familial Mediterranean Fever.
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Alternative regulatory mechanisms

Chae et al.43 demonstrated the involvement of the NF-κB pathway 
in FMF pathogenesis. Their study43 revealed that pyrin can serve 
as a substrate for caspase-1, and the cleavage product of pyrin 
translocates to the nucleus, where it enhances NF-κB activity by 
promoting IκB degradation. Additionally, caspase-1–mediated 
pyrin cleavage was found to be elevated in FMF patients. These 
observations were corroborated by Fayez et al.,27 whose in silico 
analysis of pyrin and caspase-1 supported the findings of Chae et 
al.43

Another regulatory mechanism affected by disease-causing MEFV 
variants is pyrin-mediated autophagy. Kimura et al.44 demonstrated 
that pyrin functions as an autophagy receptor, recognizing and 
promoting the autophagy of NOD-like receptor pyrin domain–
containing 1 (NLRP1), NOD-like receptor pyrin domain–containing 
3 (NLRP3), and pro–caspase-1. Pathogenic MEFV variants were 
associated with reduced autophagy of these inflammasome 
components. Consistent with these findings, Skendros et al.45 and 
Mitroulis et al.46 reported diminished autophagy of inflammasome 
components in FMF patients.

Mortensen et al.47 demonstrated that pyrin inflammasome 
activation reduces the secretion of IL-1 receptor antagonist, thereby 
diminishing anti-inflammatory capacity and suggesting a novel 
mechanism contributing to FMF pathogenesis.

Integrated model of pathogenesis

Collectively, current evidence suggests that B30.2/CHS dysregulation, 
cytoskeletal alterations, and impaired autophagy converge on a 
common pathogenic node: the loss of negative regulation between 
pyrin dephosphorylation and ASC oligomerization. Because the 
cytoskeleton modulates pyrin activation at the same step as the B30.2 
and CHS domains (downstream of dephosphorylation), we propose 
a functional coupling between these systems. Specifically, the B30.2 
domain likely depends on precise cytoskeletal configurations to 
exert its inhibitory effect. FMF-associated variants impair B30.2/CHS 
function and disrupt this cytoskeleton-dependent regulation. In 
combination with reduced autophagic clearance, these defects lower 
the activation threshold of the pyrin inflammasome, promoting 
excessive ASC oligomerization and driving the hyperinflammatory 
phenotype observed in FMF.

FIG. 5. Cytoskeleton in the pathogenesis of FMF.
Studies have shown that cytoskeleton is involved in the regulation of  pyrin inflammasome activation downstream of  dephosphorylation and upstream of  ASC oligomerization, and an 

intact cytoskeleton is required for activation. Therefore, disruption of  cytoskeleton blocks the activation of  pyrin inflammasome. On the other hand, the need for an intact cytoskeleton 

for pyrin inflammasome activation is removed in patients with FMF. Thus, pyrin inflammasome activation occurs even in the presence of  a disrupted cytoskeleton. Created in BioRender.

com. PYD, pyrin domain; CHS, central helical scaffold; B-box, zinc finger domain; FMF, Familial Mediterranean Fever.
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FAMILIAL MEDITERRANEAN FEVER AND YERSINIA

Pyrin functions as a pattern recognition receptor that senses 
perturbations in cellular homeostasis, including those induced by 
microbial processes.12 Studies have shown that various bacterial 
toxins modulate pyrin inflammasome–mediated immune responses 
by targeting Rho GTPases.7 Notable toxins that regulate this guard 
mechanism and thereby influence pyrin inflammasome activation 
include the T6SS of Burkholderia cenocepacia;7,19,48 TcdA and TcdB of 
Clostridium difficile;7,49 VopS of Vibrio parahaemolyticus;7 and YopE, 
YopT, and YopM of Yersinia pestis.50,51 Among these, Y. pestis holds 
particular significance.

Toxins produced by Y. pestis differentially regulate the 
pyrin inflammasome. YopE and YopT inhibit Rho GTPases, 
thereby disrupting phagocytosis52 and activating the pyrin 
inflammasome.50,53-55 In contrast, YopM exploits RhoA-activated 
kinases to phosphorylate pyrin, suppressing pyrin inflammasome–
mediated inflammatory responses.50,51,56,57

For decades, researchers have sought to explain the high carrier 
frequency of FMF-associated variants among Mediterranean 
populations, interpreting it as a possible outcome of selective 
advantage against a historical disease.58,59 Y. pestis, the plague-
causing bacterium, has emerged as a plausible driver of positive 
selection in FMF carriers for several reasons:

Y. pestis suppresses pyrin inflammasome–mediated inflammation 
via YopM.50,51,56,57

FMF-associated variants confer a gain of function, resulting in 
overactivation of the pyrin inflammasome.6

Historical plague epidemics were widespread throughout the 
Mediterranean region.60

In 2020, Park et al.61 provided strong evidence supporting this 
hypothesis. Their key findings were:

Haplotype analysis indicated recent positive selection of FMF-
associated variants in the studied population.

Mutant pyrin exhibited reduced binding affinity to YopM compared 
with wild-type pyrin.

FMF patients mounted a stronger immune response against Y. pestis 
than healthy individuals.

Other microorganisms, including Mycobacterium tuberculosis62 and 
Brucella melitensis,63 have also been proposed as contributors to the 
positive selection of FMF variants; however, the evidence supporting 
these claims remains limited.

GENETICS OF FAMILIAL MEDITERRANEAN FEVER

The MEFV gene and inheritance patterns

FMF is an autoinflammatory disorder caused by pathogenic 
variants in the MEFV gene. The causative locus for FMF was first 
identified in 1997 by the International FMF Consortium and the 
French FMF Consortium.4,5 The MEFV gene encodes pyrin, a protein 

that regulates the inflammasome and IL-1β processing, directly 
linking MEFV variants to innate immune dysregulation. Since 
its discovery, MEFV has remained one of the most extensively 
studied autoinflammatory genes for elucidating mechanisms of 
dysregulated innate immunity.64

Historically, FMF has been considered an autosomal recessive 
disorder. Biallelic pathogenic MEFV variants, particularly prevalent 
in populations such as Turks, Armenians, Arabs, and non-Ashkenazi 
Jews,65 are strongly associated with disease. However, clinical 
penetrance is incomplete, and heterozygous carriers may also 
manifest typical FMF phenotypes, suggesting a spectrum between 
recessive and dominant-like inheritance patterns.66 Recent 
evidence supports a continuum of inheritance mechanisms, 
influenced by variant-specific functional effects as well as genetic 
and environmental modifiers. This incomplete penetrance and 
variable expressivity are particularly evident when comparing FMF 
phenotypes across diverse geographic and ethnic backgrounds.

Variant spectrum and genotype–phenotype correlations

The MEFV gene exhibits extensive genetic variability, with over 400 
variants currently cataloged in Infevers.67 However, only a small 
subset of these variants accounts for the majority of FMF cases. 
The most frequent and clinically significant variants are p.M694V, 
p.V726A, and p.M680I. Among them, p.M694V is consistently 
associated with early-onset disease, severe clinical phenotype, 
colchicine resistance, and a high-risk of amyloidosis. In contrast, 
p.V726A and p.M680I, although enriched in Mediterranean 
populations, are generally linked to milder phenotypes compared 
with p.M694V.65

Variants such as p.E148Q and p.R202Q have recently been reclassified 
as low-penetrance or likely benign, with expert consensus groups 
advising against their reporting as pathogenic in clinical settings. 
Large-scale cohort studies continue to confirm that genotype remains 
the strongest predictor of disease severity, although environmental 
and epigenetic factors also modulate clinical outcomes.

Genetic complexity: modifiers, epigenetics, and overlap

Beyond inheritance patterns, the genotype–phenotype relationship 
in FMF has garnered considerable attention due to its role in 
explaining the clinical complexity and heterogeneity of the disease. 
Patients carrying identical MEFV variants, particularly those with 
low penetrance, may exhibit a wide spectrum of disease courses, 
ranging from subclinical carriers to severe, colchicine-resistant 
FMF. This heterogeneity is partially attributable to the influence of 
modifier genes and environmental factors. Among genetic modifiers, 
polymorphisms in SAA1 have been strongly associated with an 
increased risk of amyloidosis.68,69 In addition, recent studies have 
highlighted the contribution of epigenetic mechanisms, including 
DNA methylation and non-coding RNA regulation, in modulating 
pyrin inflammasome activity and MEFV expression.70

Further complexity arises from the clinical and genetic overlap 
between FMF and other monogenic autoinflammatory diseases. In 
FMF-prevalent regions, particularly Türkiye, individuals clinically 
diagnosed with FMF but lacking biallelic MEFV variants have been 
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found to carry pathogenic variants in other autoinflammatory 
genes. For example, Karacan et al.71 reported families with FMF-
like phenotypes harboring either a homozygous MVK variant 
or a heterozygous TNFRSF1A variant, highlighting the potential 
for misclassification and the need for comprehensive genetic 
evaluation in atypical cases. This overlap illustrates a broader 
challenge in autoinflammatory disease classification, where genetic 
and phenotypic spectra intersect.72

Collectively, these findings underscore that FMF genetics cannot 
be interpreted in isolation but must be considered within the 
interconnected network of autoinflammatory pathways.64 They 
highlight the multilayered nature of FMF genetics, encompassing 
classical MEFV variants, modifier genes, epigenetic regulation, 
and overlapping disease genes that together shape the clinical 
phenotype.

Emerging concepts: somatic mosaicism

The advent of next-generation sequencing (NGS) has broadened 
the spectrum of MEFV variants, enabling the detection of rare and 
novel alleles as well as cases of somatic mosaicism, which have 
been increasingly reported in other autoinflammatory disorders, 
including CAPS (NLRP3) and VEXAS (UBA1).73-75 A particularly 
emerging area of interest is somatic MEFV variants.76 Although 
uncommon, somatic mosaicism has been proposed as a contributor 
to late-onset or atypical FMF, especially in cases where conventional 
germline testing fails to account for the phenotype. Somatic 
pathogenic variants may function similarly to low-penetrance 
germline alleles, modulating disease onset and severity; however, 
their detection requires high-depth sequencing methods that are 
not routinely applied in clinical practice. Current evidence remains 
limited, and further studies are required to clarify their role in FMF 
pathogenesis and clinical heterogeneity.

Diagnostic strategies in clinical practice

Genetic testing for FMF follows a stepwise, sequencing-based 
approach that balances efficiency with diagnostic accuracy. In 
patients from high-prevalence populations presenting with classical 
FMF symptoms, the first step typically involves targeted genotyping 
panels covering the most common founder variants, including 
p.M694V, p.M680I, p.V726A, and p.M694I. If these tests are negative 
or identify only a single heterozygous variant, Sanger sequencing 
of exon 10—where the majority of pathogenic variants cluster—is 
recommended.

When results remain inconclusive, particularly in atypical 
presentations or in populations with broader allelic heterogeneity, 
NGS multigene panel sequencing targeting genes associated with 
autoinflammatory diseases is indicated. NGS enables identification 
of rare or novel MEFV variants and helps exclude alternative 
autoinflammatory disorders when multigene panels are applied. 
Whole-exome or whole-genome sequencing may be justified in 
unresolved cases, although these approaches frequently reveal 
variants of uncertain significance. In select cases, especially adult-
onset disease with atypical features, high-depth sequencing to detect 
somatic mosaicism may be considered in research or specialized 
clinical settings.

At each stage, careful interpretation using reference databases such 
as Infevers, combined with clinical scoring systems, is essential 
to avoid overcalling benign polymorphisms as pathogenic. This 
diagnostic pathway emphasizes that genetic findings must always 
be interpreted in the context of clinical presentation, a principle 
central to modern rheumatology genetics.

EPIGENETIC REGULATIONS IN FAMILIAL 
MEDITERRANEAN FEVER

The Genotype–phenotype gap

The existence of patient groups whose genotypes do not conform 
to the classical autosomal recessive model of FMF has prompted 
investigation into additional contributors to disease expression. 
Such groups include:

Patients carrying only a single pathogenic variant.77,78

Patients without any identifiable pathogenic variant.79

Healthy individuals harboring two pathogenic variants.78

Populations with the same ethnic background exhibiting different 
disease courses across countries.80-82

These observations have directed attention toward epigenetic 
regulation as a potential modifier of FMF pathogenesis. Epigenetic 
mechanisms alter gene expression without changing the underlying 
DNA sequence.83 They encompass biochemical processes such 
as acetylation, methylation, and ubiquitination, as well as 
posttranscriptional regulation mediated by microRNAs (miRNAs).83

DNA methylation and chromatin architecture

Several studies have evaluated the methylation status of the MEFV 
gene and reported increased methylation,84-86 particularly in exon 
2, accompanied by reduced MEFV expression in FMF patients. 
Kirectepe et al.84 demonstrated a negative correlation between 
MEFV methylation levels and gene expression. Similarly, Zekry 
et al.86 reported that higher MEFV methylation was associated 
with increased disease severity. Erdem et al.85 investigated the 
functional consequences of exon 2 methylation and identified 
alternative splicing of this exon as a key outcome. Furthermore, 
they observed altered subcellular localization of pyrin lacking exon 
2, which localized predominantly to the cytoplasm rather than the 
nucleus, suggesting a potential mechanism for FMF in the absence 
of pathogenic variants.

Beyond MEFV-specific changes, global DNA methylation patterns 
in FMF patients have been assessed. Caldiran et al.87 reported 
increased global methylation levels in FMF patients, with a positive 
correlation between global methylation and disease severity. 
They also demonstrated reduced expression of the NLRP13 
inflammasome, attributable to hypermethylation of its promoter 
region. Notably, FMF patients with amyloidosis exhibited higher 
NLRP13 methylation than both FMF patients without amyloidosis 
and healthy controls, suggesting that this epigenetic alteration may 
contribute to amyloidogenesis and could merit screening in FMF 
patients.
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Caldiran et al.88 reported increased methylation of specific histone 
marks in FMF patients. These modifications reflected a combination 
of proinflammatory and anti-inflammatory influences, which the 
authors interpreted as indicative of heightened inflammatory 
activity accompanied by a compensatory regulatory response.

More recently, Röring et al.89 assessed chromatin accessibility in FMF 
patients compared with healthy controls using ATAC-sequencing. 
They found that FMF patients exhibited a greater number of regions 
with reduced chromatin accessibility, particularly near genes involved 
in cellular regulatory processes. Integration with transcriptomic 
data, which demonstrated downregulation of immune-related 
pathways, suggested that these chromatin changes may represent 
a compensatory mechanism aimed at counterbalancing the chronic 
hyperinflammatory state observed in FMF.

Posttranscriptional regulation: microRNAs (miRNAs)

In a study examining demethylation of inflammasome-associated 
genes in autoinflammatory disorders, Vento-Tormo et al.90 reported 
no significant differences between FMF patients and healthy 
controls. This outcome may reflect study limitations, including a very 
small FMF sample size (n = 5) and the fact that most patients (60%) 
were receiving anti–IL-1 therapy. Larger studies with appropriate 
adjustment for such confounders are therefore warranted.

MicroRNAs (miRNAs), small non-coding RNAs that regulate gene 
expression posttranscriptionally,91 represent another major 
epigenetic mechanism studied in FMF. Multiple studies have 
consistently reported altered miRNA expression in FMF patients 
compared with healthy controls.92-101 Differences have also been 
observed across clinical and genetic subgroups. For instance, Akkaya-
Ulum et al.92 reported distinct inflammatory miRNA profiles among 
homozygous patients, heterozygous patients, and healthy carriers, 
while Kahraman et al.101 observed differential expression of specific 
miRNAs between homozygous and heterozygous individuals. Wada 
et al.100 further demonstrated variation according to genotype and 
exon-specific mutations. Several studies also reported differential 
miRNA expression based on disease severity97 and attack status.99 
Additionally, Tümerdem et al.98 identified miRNAs targeting the 
NFKB and NR3C pathways that were differentially expressed in 
colchicine-resistant versus colchicine-responsive patients.

Several studies have investigated the functional role of miRNAs 
in FMF using advanced experimental approaches. Akkaya-Ulum 
et al.102 demonstrated that miR-197-3p, previously reported as 
downregulated in FMF, exerts anti-inflammatory effects in functional 
assays. Using 3′UTR luciferase experiments, they identified IL-1R as a 
direct target of this miRNA and proposed that reduced miR-197-3p 
expression may contribute to FMF pathogenesis.

Similarly, Akbaba et al.103 reported downregulated expression of miR-
30e-3p in FMF patients. Functional transfection assays suggested 
its anti-inflammatory role, and 3′UTR luciferase and Western 
blot analyses identified IL-1β as a direct target. These findings 
indicate that miR-30e-3p could serve as a potential diagnostic and 
therapeutic marker in FMF.

Koga et al.104 reported significantly reduced levels of miR-204-3p 
in FMF patients during attacks. Lipopolysaccharide stimulation 
similarly suppressed miR-204-3p in macrophages, and its inhibition 
increased TLR4-related cytokine production. Bioinformatics 
analyses suggested that miR-204-3p targets genes involved in the 
TLR pathway via regulation of PIK3γ, which was confirmed by 
luciferase assays demonstrating that miR-204-3p suppresses PIK3γ. 
Transfection of FMF monocytes further showed that miR-204-3p 
inhibition increased IL-6 and IL-12p40 expression. The authors 
proposed miR-204-3p as a potential diagnostic and therapeutic 
target in FMF.

Latsoudis et al.105 reported that miR-4520a expression is significantly 
elevated in MEFV-variant carriers compared with healthy controls. 
In silico analyses suggested that miR-4520a negatively regulates 
autophagy-related genes via the RHEB/mTOR pathway. These 
findings are consistent with protein-level studies demonstrating 
impaired autophagy in FMF patients.44-46

Limitations and future perspectives

Despite significant advances in understanding epigenetic regulation 
in FMF, several key gaps remain. Existing studies have not established 
causal links between epigenetic alterations and MEFV pathogenic 
variants, nor have they clearly demonstrated their impact on clinical 
phenotype. Furthermore, confounding factors such as colchicine 
treatment, inflammatory status, and tissue specificity complicate 
the interpretation of current epigenetic data.

Prospective studies with larger cohorts and concordance analyses 
are therefore needed to delineate the phenotypic consequences 
of epigenetic modifications. A clearer understanding of these 
mechanisms may ultimately provide opportunities for the 
development of targeted therapeutic strategies, as well as improved 
diagnostic and prognostic tools in FMF.

CONCLUSION

FMF is the prototypical monogenic autoinflammatory disease, 
arising from pathogenic variants in the MEFV gene. Although it is 
well established that these variants lead to overactivation of the 
pyrin inflammasome and a resultant hyperinflammatory state, 
the precise mechanisms underlying this overactivation remain 
incompletely understood. Evidence from the literature suggests that 
alterations in pyrin ligand-binding activity, particularly within the 
B30.2 and CHS domains, together with disruptions in cytoskeletal 
regulation, constitute key pathogenic events in FMF. These 
alterations, which affect the same stage of pyrin inflammasome 
activation and produce similar downstream consequences, are 
likely interrelated components of a unified pathogenic mechanism.

While pathogenic MEFV variants are central to FMF, incomplete 
penetrance and variable clinical expression reflect additional layers 
of genetic and epigenetic regulation. In patients with atypical clinical 
features, pathogenic variants in other autoinflammatory genes 
should be considered. Current studies on epigenetic regulation in 
FMF remain insufficient to fully explain their impact on disease 
pathogenesis and phenotypic variability, highlighting the need for 
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rigorously designed investigations. A deeper understanding of these 
regulatory mechanisms has the potential to improve diagnostic 
accuracy, guide personalized therapeutic strategies, and inform 
prognosis in FMF patients.
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