Efficacy of Palbociclib and Endocrine Treatment in Heavily Pretreated Hormone Receptor-positive Her2-negative Advanced Breast Cancer: Retrospective Multicenter Trial

Atakan Demir1, Nil Molinas Mandel2, Semra Paydas3, Güökhan Demir1, Özlem Er1, Nazım Serdal Turhal4, Sevil Bavbek2, Yeşim Eralp3, Pınar Mualla Saip4, Nilüfer Güler4, Adnan Aydner5, Başak Oyan Uluç1, Sadettin Kılıçkap6, Necdet Üskent4, Nuri Karadurmuş7, Mehmet Ali Kaplan8, Mustafa Teoman9, Teoman Yanmaz2, Hacer Demir10, Özkan Alan11, Taner Korkmaz12, Polat Olguń12, Özlem Sönmez Uysal7, Kadri Altundağ13, Şeyda Gündüz14, Meral Günaldı15, Murat Sarı3, İsmail Beypınar12, Gül Başaran1

1Department of Medical Oncology, Acıbadem University, İstanbul, Turkey
2Clinic of Oncology, American Hospital, İstanbul, Turkey
3Department of Medical Oncology, Çukurova University School of Medicine, Çukurova, Turkey
4Clinic of Oncology, Turhal Anadolu Medical Center Hospital, Kocaeli, Turkey
5Department of Medical Oncology, İstanbul University Oncology Institute, İstanbul, Turkey
6Department of Medical Oncology, Hacettepe University School of Medicine, Ankara, Turkey
7Clinic of Medical Oncology T.C. Ministry of Health Gülhane Training and Research Hospital, Ankara, Turkey
8Department of Medical Oncology, Dicle University School of Medicine, Diyarbakır, Turkey
9Şişli Memorial Hospital, İstanbul, Turkey
10Department of Medical Oncology Afyon Kocatepe University School of Medicine, Afyon, Turkey
11Tekirdağ State Hospital, Tekirdağ, Turkey
12Near East University Hospital, Lefkoşa, TRNC
13Breast Cancer Clinic, United Kingdom
14Antalya Memorial Hospital, Antalya, Turkey
15Clinic of Medical Oncology, Florya Medical Park Hospital, İstanbul, Turkey

Address for Correspondence: Atakan Demir, Division of Medical Oncology, Acibadem University, School of Medicine Acıbadem, İstanbul, Turkey
Tel: +90 506 297 97 70, Email: atakandemir85@gmail.com

Received: 27 November 2019
Accepted: 13 January 2020

DOI: 10.4274/balkanmedj.galenos.2019.11.143

ABSTRACT

Introduction: The synthesis of CDK4/6 inhibitors with treatment of endocrine in start two series of treatment has been widely accepted as the standard for Estrogen (ER)-positive MBC (metastatic breast cancer) patients. In spite of, the activity of CDK4/6 inhibitors in MBC patients who had progressed despite receiving multiple lines of treatment is not well understood.

Aim: We aimed to report on the activity and safety of a CDK4/6 inhibitor (palbociclib) for patients who had failed at least three lines of treatment for ER+/ MBC.

Study Design: Multi-center retrospective observational cohort study

Methods: In this retrospective observational cohort study, we included 43 patients, whom were given palbociclib after at least 3 lines of systemic treatment for ER-positive HER2-negative MBC.

Results: Overall, the median progression-free survival in our population was 7 months (25th percentile = 4, 75th percentile = 10) (Figure 1) and median overall survival was 11 months (25th percentile = 6, 75th percentile = 19). Although there were some adverse events, palbociclib was generally well tolerated, so dose reduction was needed for only 6 (14%) patients.

Conclusion: We demonstrated that the efficacy of palbociclib among heavily treated hormone receptor-positive HER2-negative advanced BC patients was acceptable clinical benefit, and it was generally well tolerated among this population.
Breast cancer (BC) is the by a majority cancer in women. Despite the numerous therapeutic options at our disposal, breast cancer remains incurable, earning it the notorious reputation of being the second most common cause of cancer death in western populations, following lung cancer (1). BC is a heterogeneous disease and has a variety of subgroups according to clinical, pathological, and molecular features (2).

Approximately 80% of all BC cases are estrogen receptor-positive (ER+)/human epidermal growth factor receptor 2 negative (HER2-). Accord to current guidelines, sequential endocrine therapy (ET) is the main treatment recommendation for premenopausal and postmenopausal women with ER+/HER2- stage 4 BC (except for extensive nodal involvement) (3,4). Unfortunately, resistance to ET (acquired or de novo) will develop in the vast majority of these cases during therapy (5). Cyclin dependent kinases and mammalian target of rapamycin (mTOR) signaling pathways are the major mechanisms of resistance to ET (6).

The current standard treatment for ER+ MBC patients is 10-12 cycles of CDK4/6 inhibitors with ET. For patients who had failed at least three lines of treatment for ER+ MBC, CDK4/6 inhibition (palbociclib, abemaciclib, and ribociclib) (7-9).

In this retrospective observational cohort study, between 14 September 2015 and 14 March 2019, we included 43 patients from different medical oncology clinics in Turkey. Clinically, we were given palbociclib after at least three lines of systemic treatment for ER+ and HER2-negative MBC (confirmed at diagnosis or on a metastatic lesion). Patients using fulvestrant or aromatase inhibitors with palbociclib were accepted for study.

We defined the date of first drug intake as the start of treatment. All patients provided signed informed consent, and ethical approval was given by our ethical committee (Date: 12.09.2019, Number: 2019-14/34).

Main outcomes of this trial were overall survival (OS) and progression-free survival (PFS). OS was determined as the time window between the beginning of treatment and death or last visit date. PFS was the time window between the beginning of treatment and radiological progression, death, or last visit date. We also reported the frequency of adverse events related to therapy (neutropenia, anemia, thrombocytopenia, diarrhea, etc.).

Statistical Analysis
The data was analyzed using descriptive statistical methods. Continuous variables are given as mean ± standard deviation, while categorical variables are given in percentages. Kaplan Meier curves were performed to determine overall survival and progression-free survival. SPSS v.21 was used to analyze the data and generate graphical content.

Results
The median age of patients was 51 (25th percentile 44, 75th percentile 58) years. All patients were diagnosed with mBC and 30 (69.7%) patients were initially stage I–III. All of them were ER positive and five (11.6%) ER positive/PR negative. The vast majority of our patients were pathologically classified as having invasive ductal carcinoma (n=41, 95.3%). All patients were given at least three lines of treatment for mBC, including chemotherapy and endocrine therapy (ET). For most of the patients, adjuvant ET was tamoxifen (n=19, 44.1%), other combinations were as follows: letrozole (n=6, 13.9%) and anastrozole (n=3, 6.9%). Five patients (11.6%) had received both a steroidal and a nonsteroidal AI. Fulvestrant was used in 39.5% (n=17) of patients before palbociclib or AI. Twenty-one premenopausal women had undergone surgical or medical castration as part of standard treatment. Only one patient had been treated with the exemestane/everolimus combination. Most of our patients (55%; n=23) had received sequential mono chemotherapy with standard drugs, including taxanes, capecitabine, gemcitabine, and anthracyclines, within two weeks, past medical history of cardiomyopathy, arrhythmias including atrial fibrillation, torsades de pointes, long or short QT interval, prior myocardial infarction, coronary artery bypass grafting, heart failure and pulmonary embolism, hypertension, suicidal behavior. A few patients had had heart failure and pulmonary embolism, hypertension, and suicidal behavior.

Breast cancer, CDK4/6 inhibitors, palbociclib
CDK4/6 inhibitors are critical steps in the abolishment of ET resistance among ER-positive, HER2-negative patients. Many Phase II and III clinical trials have been carried out to investigate the efficacy and safety of CDK4/6 inhibitors among this population (8-11). In the PALOMA-1 trial, the median PFS was 20.2 months in negative patients, but there are no large phase 3 studies showing efficacy after treatment. Ban et al. (11) demonstrated that the abemaciclib/fulvestrant combination prolonged PFS significantly (median PFS; 16.4 vs 9.3 months, p=0.001) (13). Similarly, in the PALOMA-2 trial, median PFS was 24.8 months in palbociclib/letrozole arm and 14.5 months in letrozole/placebo arm (HR: 0.58; 95% CI: 0.46–0.72; p < 0.001) (9). Another CDK4/6 inhibitor, abemaciclib, was also tested in second line treatment in MONARCH 2 trial. The results were promising; abemaciclib/fulvestrant combination prolonged PFS significantly (median PFS; 16.4 vs 9.3 months, p=0.001) (11).

In spite of the efficiency and reliance of CDK4/6 inhibitors were well investigated among ER-positive, HER2-negative patients, there are no large number of phase 3 studies showing efficacy after treatment. Ban et al. published a retrospective analysis of 24 heavily pre-treated ER+/HER2- mBC patients. All patients in their trial received a minimum of four lines of treatment for mBC including chemotherapy and ET. They reported that 58.3% of patients achieved stable disease and median progression-free survival was 4.8 months; median overall survival was 11 months. They reported that grade III neutropenia occurred in 54.1% (n = 13) patients, grade IV neutropenia in 12.5% (n = 3) of patients and grade III thrombocytopenia in 12.5% (n = 3) of patients. The most commonly reported treatment-related nonhematologic adverse events were nausea (12.5%; n = 3). These side effects were consistent with our trial. In our trial, we achieved more stable patients compared to this trial (65.1% vs 58.3) and our PFS was a bit longer (7 vs 4.8 months) which may be explained by the use different of treatment lines between trials (min. 3 lines vs min. 4 lines) but the overall survival was similar with our study. A recent retrospective analysis also aimed to investigate the role of palbociclib among heavily treated (more than 4 previous CT lines) mBC patients. They reported the utility of palbociclib among 118 HR positive HER2-negative advanced breast cancer patients. Clinical benefit rate was 47.5%, overall response rate 15.8%, median PFS 4.5 months and median OS 15.8 months. In terms of therapeutic efficacy PFS and response rates were comparable with our results but our results were again favorable. Hematological side effects were consistent with our trial; 89.7% developed neutropenia (grade ≥ 3 in 56.8%), 5.1% experienced febrile neutropenia. However, dose reductions and discontinuation rates were higher in that trial compared to our trial; 48.3% had dose decreases after side effects and 3.4% had palbociclib discontinued due to toxicity. (16).

In summary; our trial adds important information about the use of palbociclib among highly treated HR positive HER2-negative advanced breast cancer patients for literature. We demonstrated a comparable PFS and OS rates among advanced patients in a real life trial, and palbociclib was well tolerated among such a severe patient population except for febrile neutropenia. Main limitation of our study is its retrospective nature and relatively small number of patients. Additionally, we only determined progression free survival and overall survival so we could not get any information about quality of life measures.

Conclusion
We demonstrated that the efficacy of palbociclib among heavily treated HR positive HER2-negative advanced breast cancer patients were comparable and it was generally well tolerated among this population. But, further randomized controlled studies with larger number patients are needed to confirm our findings and define patients who may benefit even in late stage disease.

References
TABLE 1. Baseline characteristics of patients in the study cohort

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years) (25th percentile-75th percentile)</td>
<td>51 (44-58)</td>
</tr>
<tr>
<td>Hormone receptor status</td>
<td></td>
</tr>
<tr>
<td>-ER+/PR+</td>
<td>n=38 (88.3%)</td>
</tr>
<tr>
<td>-ER+/PR-</td>
<td>n=5 (11.6%)</td>
</tr>
<tr>
<td>Histological diagnosis</td>
<td></td>
</tr>
<tr>
<td>-Ductal invasive</td>
<td>n=41 (95.3%)</td>
</tr>
<tr>
<td>-Lobular invasive</td>
<td>n=2 (4.6%)</td>
</tr>
<tr>
<td>Stage of disease</td>
<td></td>
</tr>
<tr>
<td>-Stage I-III</td>
<td>n=30 (69.7%)</td>
</tr>
<tr>
<td>-Stage IV</td>
<td>n=13 (30.3%)</td>
</tr>
<tr>
<td>Menopausal status (post-menopausal patients)</td>
<td>n=22 (51.1%)</td>
</tr>
<tr>
<td>Adjuvant endocrine therapy</td>
<td></td>
</tr>
<tr>
<td>-Tamoxifen</td>
<td>n=19 (44.1%)</td>
</tr>
<tr>
<td>-Letrozole</td>
<td>n=6 (13.9%)</td>
</tr>
<tr>
<td>-Anastrazole</td>
<td>n=3 (6.9%)</td>
</tr>
<tr>
<td>Site of metastasis</td>
<td></td>
</tr>
<tr>
<td>-Bone</td>
<td>n=11 (25.6%)</td>
</tr>
<tr>
<td>-Visceral</td>
<td>n=27 (62.8%)</td>
</tr>
<tr>
<td>-Brain</td>
<td>n=5 (11.6%)</td>
</tr>
</tbody>
</table>
TABLE 2. Adverse events during palbociclib treatment

<table>
<thead>
<tr>
<th>Event</th>
<th>Count (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevated transaminases</td>
<td>25 (58.1%)</td>
</tr>
<tr>
<td>Any neutropenia</td>
<td>12 (27.9%)</td>
</tr>
<tr>
<td>Febrile neutropenia</td>
<td>2 (4%)</td>
</tr>
<tr>
<td>Nausea any grade</td>
<td>30 (69.7%)</td>
</tr>
<tr>
<td>Dose reduction due to side effects</td>
<td>6 (14%)</td>
</tr>
</tbody>
</table>

FIG. 1. Progression-free survival graphic by Kaplan–Meier curve

FIG. 2. Overall survival graphic by Kaplan–Meier curve