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Background: The coronavirus disease-2019 (COVID-19) pandemic, 
caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), 
has urgently necessitated effective therapeutic solutions, with a focus on 
rapidly identifying and classifying potential small-molecule drugs. Given 
traditional methods’ labor-intensive and time-consuming nature, deep 
learning has emerged as an essential tool for efficiently processing and 
extracting insights from complex biological data.

Aims: This study aims to utilize deep learning techniques, particularly 
deep neural networks (DNN) enhanced with the synthetic minority 
oversampling technique (SMOTE), to enhance the classification of binding 
activities in anti-SARS-CoV-2 molecules across various bioassays.

Methods: We used 11 bioassay datasets covering various SARS-CoV-2 
interactions and inhibitory mechanisms. These assays ranged from 
spike-ACE2 protein-protein interaction to ACE2 enzymatic activity and 
3CL enzymatic activity. To address the prevalent class imbalance in these 
datasets, the SMOTE technique was employed to generate new samples 
for the minority class. In our model-building approach, we divided 
the dataset into 80% training and 20% test sets, reserving 10% of the 
training set for validation. Our approach involved employing a DNN that 
integrates ReLU and sigmoid activation functions, incorporates batch 
normalization, and uses Adam optimization. The hyperparameters and 
architecture of the DNN were optimized through various tests on layers, 
minibatch sizes, epoch sizes, and learning rates. A 40% dropout rate was 
incorporated to mitigate overfitting. For model evaluation, we computed 

performance metrics, such as balanced accuracy (BACC), precision, recall, 
F1 score, Matthews’ correlation coefficient (MCC), and area under the 
curve (AUC).

Results: The performance of the DNN across 11 bioassay test sets 
revealed varying outcomes, significantly influenced by the ratios of 
active-to-inactive compounds. Assays, such as AlphaLISA and CoV-PPE, 
demonstrated robust performance across various metrics, including 
BACC, precision, recall, and AUC, when configured with more balanced 
ratios (1:3 and 1:1, respectively). This suggests the effective identification 
of active compounds in both cases. In contrast, assays with higher 
imbalance ratios, such as 3CL (1:38) and cytopathic effect (1:15), 
demonstrated higher recall but lower precision, highlighting challenges 
in accurately identifying active compounds among numerous inactive 
compounds. However, even in these challenging settings, the model 
achieved favorable BACC and recall scores. Overall, the DNN model 
generally performed well, as indicated by the BACC, MCC, and AUC 
values, especially when considering the degree of dataset imbalance in 
each assay.

Conclusion: This study demonstrates the significant impact of deep 
learning, particularly DNN models enhanced with SMOTE, in improving 
the identification of active compounds in bioassay datasets for COVID-19 
drug discovery, outperforming traditional machine learning models. 
Furthermore, this study highlights the efficacy of advanced computational 
techniques in addressing high-throughput screening data imbalances.

 Bilge Eren Yamasan1,  Selçuk Korkmaz2

INTRODUCTION

The outbreak of the novel coronavirus, severe acute respiratory 
syndrome-coronavirus-2 (SARS-CoV-2), causing coronavirus 
disease-2019 (COVID-19), has posed unprecedented challenges to 
global health, triggering an urgent need for effective therapeutic 
interventions.1 This scenario underscores the importance of rapidly 
identifying and developing potential therapeutic agents, particularly 

small molecules with promising binding activity against various 
viral targets. These molecules are important in the fight against 
the pandemic. Accurate classification of these molecules is pivotal 
for accelerating drug discovery and development processes. In 
this critical quest, the role of computational tools, especially 
machine learning (ML) models, has become increasingly valuable. 
Offering the potential to significantly accelerate the identification 
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and classification of promising drug candidates, these tools have 
emerged as key contributors in the battle against COVID-19, 
enabling researchers to efficiently analyze complex biological data 
and optimize experimental efforts through the predictive power of 
advanced algorithms.2,3

In antiviral research, traditional methods for classifying the binding 
activities of small molecules, while effective, often involve labor-
intensive and time-consuming experimental procedures.4 The 
advent of quantitative high-throughput screening (qHTS) techniques 
has revolutionized this landscape by generating extensive datasets. 
However, this abundance of data presents a dual challenge: its 
complexity and volume often exceed the processing capabilities 
of conventional analytical methods.5 ML methods, and more 
specifically deep learning, have emerged as a potent solution to 
these challenges.6,7 Deep learning offers a powerful approach to 
extracting meaningful insights from complex data by providing 
robust models that can efficiently handle large datasets and navigate 
vast chemical spaces and intricate biological interactions.8 This 
advancement in the computational analysis is both a response to 
the immediate challenges posed by the pandemic and a significant 
leap forward in the field of drug discovery.

Deep learning, also known as deep neural networks (DNN), has 
demonstrated significant success in various fields, including drug 
discovery, by offering potent tools to model complex biological 
interactions.6 Its application in classifying the binding activities of 
molecules, especially in the context of antiviral research against 
SARS-CoV-2, represents a promising avenue for enhancing the 
screening and analysis of potential antiviral agents.9 However, the 
effectiveness of deep learning models is contingent upon their ability 
to generalize across a range of diverse experimental conditions and 
assays-a challenge frequently encountered in biological datasets. 
Our study tackles this challenge by concentrating on the classification 
of binding activity for anti-SARS-CoV-2 molecules, utilizing deep 
learning techniques across multiple assays. This methodology is 
influenced by recent strides in computational drug discovery, as 
showcased in projects like REDIAL-2020. In this initiative, multiple 
ML models were applied to predict various activities, encompassing 
live viral infectivity, viral entry, viral replication, and host cell 
toxicity.9

We used 11 SARS-CoV-2 bioassays from the National Center for 
Advancing Translational Sciences (NCATS) Open Data Portal for 
COVID-19 (https://opendata.ncats.nih.gov/covid19). These bioassays 
are derived from qHTS and frequently exhibit an imbalance, typically 
characterized by a notably larger number of inactive compounds 
than active ones. This imbalance poses a significant challenge for 
ML and deep learning algorithms because the limited data for the 
less represented (minority) class makes learning more difficult.10 
Balancing the datasets through the application of oversampling 
techniques is one approach to address this challenge.6 In this 
study, we utilized the synthetic minority oversampling technique 
(SMOTE)11, a widely used method for oversampling, to establish a 
balance between active and inactive compounds in each bioassay. 
Furthermore, we generated molecular descriptors for every 
compound in each bioassay. Subsequently, we applied the data 

balancing method to each dataset and proceeded to train the DNN 
models on these adjusted datasets. The predictive performance of 
these models was assessed using a range of metrics.

METHODS

Datasets

In our study, we used 11 experimental bioassay datasets from the 
NCATS OpenData Portal, including AlphaLISA and TruHit counter 
screens for spike-ACE2 protein-protein interaction12, ACE2 enzymatic 
activity13, and 3CL enzymatic activity14 assays targeting SARS-CoV-2 
entry and replication. We also employed SARS-CoV-2 cytopathic 
effect (CPE) and host tox counter screen (cytotox) assays in Vero E6 
cells15, along with SARS-CoV pseudotyped particle entry (CoV-PPE), 
its counter screen (CoV-PPE-cs), and similar assays for middle east 
respiratory syndrome (MERS-PPE and MERS-PPE-cs).16 Additionally, a 
human fibroblast toxicity (hCYTOX) assay was included to evaluate 
compound cytotoxicity.

KC et al.9 previously employed these bioassays. We used PaDEL 
software to calculate 1878 molecular descriptors for each compound 
within each bioassay. Refer to Yap17 for more comprehensive 
details on these descriptors. We applied a preprocessing step. First, 
empty columns, missing values, and variables with zero variance 
were eliminated. Subsequently, the datasets underwent centering 
and scaling through z-score transformation. Table 1 summarizes 
the number of compounds (both before and after preprocessing, 
categorized as active and inactive compounds), the active-to-inactive 
ratio, and the number of variables retained post-preprocessing for 
each bioassay dataset.

Data balancing using SMOTE

SMOTE, a popular oversampling method, generates new synthetic 
samples for the minority class instead of replicating existing 
ones.11 It begins by identifying the k-nearest neighbors (k-NN) of 
each minority class sample and then synthesizes new samples in 
the direction of these neighbors. This procedure includes several 
steps: first, determining the difference between a sample from 
the minority class and its nearest neighbor; next, multiplying this 
difference by a randomly chosen number between 0 and 1; then, 
adding this product to the original sample, thereby generating a 
new synthetic sample along the line connecting the two samples; 
and finally, repeating this process for every sample in the minority 
class. Such a technique expands the decision-making region for the 
minority class, prompting classifiers to establish broader and more 
generalized decision regions. This stands in contrast to narrow and 
overly specific decision regions, ultimately enhancing the overall 
generalization of the classifier.

Deep neural networks

DNNs, a specialized area of ML, are distinguished by their 
architecture, which includes several non-linear hidden layers 
between the input and output layers.18 The ability of DNNs to decode 
complex relationships between inputs and outputs is enhanced 
by their multiple layers and adjustable weights.6 The training of 
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a DNN begins with randomly assigned weights. Subsequently, a 
loss function is used to evaluate the model’s predictions against 
actual classes, resulting in a loss score. This score is crucial for the 
backpropagation algorithm, which calculates derivatives of the loss 
function concerning the weights in each layer using the chain rule.19 
Subsequently, an optimizer, such as a gradient descent algorithm, 
carefully adjusts the weights based on these derivatives to lower 
the loss. This iterative process of assessment, calculation, and 
refinement aims to minimize the loss function, leading to a DNN 
that is finely tuned to make predictions that closely align with true 
classifications.

Model building

For our model, we divided each dataset into an 80% training set 
and a 20% test set. Additionally, we randomly selected 10% of each 
training set to serve as validation sets. We used the training sets to 
train the DNN models and the test sets to assess their predictive 
performances. The validation sets served two main purposes: first, 
to fine-tune the hyperparameters of the network, and second, to 
identify the optimal cut-off points for the predicted probabilities 
generated by the DNN models. To select optimal cut-off points, we 
generated a plot illustrating balanced accuracy (BACC) as a function 
of the predicted probabilities derived from the validation sets. Then, 
we identified the point at which the DNN attained the highest BACC, 
deeming it as the optimal cut-off point. This strategy was offered 
by Korkmaz6. We applied the SMOTE method for data balancing in 
each training set. The ReLU function activated the input and hidden 
layers, and a sigmoid function was used for the output layer. Batch 
normalization enhances network performance and stability in each 
layer. We utilized a binary loss function and the Adam optimization 
method to tune hyperparameters through five-fold cross-validation. 
The model architecture was selected based on minimizing cross-
validation loss, leading to a three-hidden-layered network. After 
evaluating various minibatch sizes, we determined 64 to be optimal, 

setting the epoch size at 150. A 40% dropout rate was applied to 
each layer to prevent overfitting, and the learning rate was set at 
0.001 as it most effectively minimized cross-validation loss. We used 
Python v3.7.1 and R v4.3.2 for all analyses. We utilized the Keras 
(v3.0) and TensorFlow (v2.13) libraries for DNN model building and 
the imbalanced-learn library to apply the SMOTE method in Python. 
Receiver operating characteristic (ROC) curves were created using 
the pROC (v1.18.5) package in R.

Performance metrics

We computed various performance metrics, including BACC, 
precision, recall, F1-score, MCC, and AUC, to evaluate the validation 
and test set performances of the DNN models.

Here, TP represents true positives, TN denotes true negatives, FP 
signifies false positives, and FN indicates false negatives. The variable 
i iterates over all n0 data points that are accurately labeled as 1, 
while j covers all n1 data points that are correctly identified as 0. Y1i 
refers to the i-th data point with a true label of 1, Y0j to the j-th data 
point with a true label of 0, and I represents the indicator function.

These measures are defined in Korkmaz6.

TABLE 1. Characteristics of the Bioassays Used in the Study.

Assay Before preprocessing
After 
preprocessing

Number of active 
compounds

Number 
of inactive 
compounds

Active-to-
inactive ratio

Number of 
remaining 
variables

3CL 11,400 10,061 260 9,801 1:38 1,330

ACE2 3,250 2,780 174 2,606 1:15 1,046

AlphaLISA 3,250 2,780 729 2,051 1:3 1,046

CoV-PPE 5,099 4,190 2,051 2,139 1:1 1,317

CoV-PPE-cs 5,099 4,190 963 3,227 1:3 1,317

CPE 9,179 8,204 507 7,697 1:15 1,328

cytotox 9,179 8,204 1,410 6,794 1:5 1,328

hCYTOX 4,409 3,849 373 3,476 1:9 1,046

MERS-PPE 2,671 2,245 508 1,737 1:3 1,044

MERS-PPE-cs 2,671 2,245 183 2,062 1:11 1,044

TruHit 3,250 2,780 810 1,970 1:2 1,046

ACE2, angiotensin-converting enzyme 2; PPE-cs, pseudotyped particle entry-counter screen; CPE, cytopathic effect; hCYTOX, human fibroblast toxicity; MERS, middle 
east respiratory syndrome.
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RESULTS

Performance metrics were acquired for each bioassay. The results 
for the validation set are summarized in Table 2, while the results 
for the test set are presented in Table 3. Additionally, ROC curves are 
shown in Figures 1, 2 for both validation and test sets to visualize 
the classification ability of the DNN model.

The performance of the DNN model across 11 bioassay test 
sets provides valuable insights, especially when considering the 
imbalance ratio of active-to-inactive compounds. The subsequent 
section provides a comprehensive analysis of each assay:

3CL assay: With an imbalance ratio of 1:38, this assay presented 
a substantial challenge. The model achieved a BACC of 0.731, a 
noteworthy accomplishment given the high level of imbalance. 
However, the precision was low at 0.075, indicating challenges in 
accurately identifying active compounds, a likely consequence of 
the high number of inactive compounds. The recall of 0.700 suggests 
that the model was sensitive to detecting active compounds. 
However, this sensitivity came at the cost of precision. The MCC of 
0.172 and AUC of 0.783 further reflect these trends.

ACE2 assay: With a more manageable imbalance ratio of 1:15, 
the model showed improved performance with a BACC of 0.772. 

TABLE 2. Prediction Metrics of the Deep Neural Network Model for Validation Sets.

Assay BACC Precision Recall F1-score MCC AUC

3CL 0.906 0.218 0.895 0.351 0.418 0.924

ACE2 0.771 0.194 0.824 0.315 0.308 0.828

AlphaLISA 0.828 0.595 0.862 0.704 0.594 0.906

CoV-PPE 0.773 0.707 0.837 0.766 0.546 0.832

CoV-PPE-cs 0.814 0.500 0.836 0.626 0.532 0.876

CPE 0.696 0.221 0.512 0.309 0.270 0.736

cytotox 0.735 0.352 0.776 0.484 0.367 0.803

hCYTOX 0.749 0.369 0.649 0.471 0.396 0.794

MERS-PPE 0.784 0.450 0.794 0.574 0.472 0.833

MERS-PPE-cs 0.820 0.250 0.857 0.387 0.388 0.864

TruHit 0.799 0.671 0.775 0.719 0.577 0.876

BACC, balanced accuracy; MCC, Matthews correlation coefficient; AUC, area under the curve; Precision, positive predictive value; Recall, sensitivity; ACE2, angiotensin-
converting enzyme 2; PPE-cs, pseudotyped particle entry-counter screen; CPE, cytopathic effect; hCYTOX; human fibroblast toxicity; MERS, middle east respiratory 
syndrome.

FIG. 1. ROC curves for validation sets of 11 anti-SARS-CoV-2 bioassays 
(values represent the AUC and corresponding 95% confidence intervals).
ROC, receiver operating characteristic; SARS-CoV-2, severe acute respiratory syndrome-

coronavirus-2; AUC, area under the curve

FIG. 2. ROC curves for the test sets of 11 anti-SARS-CoV-2 bioassays 
(values represent the AUC and corresponding 95% confidence intervals).
ROC, receiver operating characteristic; SARS-CoV-2, severe acute respiratory syndrome-

coronavirus-2; AUC, area under the curve
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The higher precision of 0.175, compared to 3CL, indicates better 
identification of true positives, whereas the high recall of 0.846 
suggests that the model effectively identified the most active 
compounds. The F1-score of 0.289 and MCC of 0.294 align with 
these findings, while an AUC of 0.842 indicates good overall model 
performance.

AlphaLISA assay: This assay had a relatively balanced ratio of 1:3, 
reflected in strong performance across metrics, including a high 
BACC of 0.803, precision of 0.603, and recall of 0.813. The F1-score 
of 0.692 and MCC of 0.561 are particularly noteworthy, suggesting 
a well-balanced model. The high AUC of 0.868 indicates excellent 
overall model performance.

CoV-PPE assay: Exhibiting a balanced ratio of 1:1, this assay 
demonstrated robust performance metrics. It achieved the 
highest precision of 0.730 among all assays, indicating an effective 
identification of active compounds. However, the recall is slightly 
lower at 0.659, suggesting that some active compounds were 
missed. The F1-score of 0.693 and MCC of 0.417, along with an AUC 
of 0.755, indicate good overall performance.

CoV-PPE-cs assay: Similar to AlphaLISA in terms of imbalance (1:3), 
the model exhibited a balanced performance, with a precision of 
0.556 and a recall of 0.675. The BACC of 0.750, F1-score of 0.610, 
MCC of 0.470, and AUC of 0.799 indicate a model that performs well 
in both identifying active compounds and avoiding false positives.

CPE assay: Despite a challenging imbalance ratio of 1:15, the model 
achieved a notable recall of 0.764 but struggled with precision 
(0.121), indicating difficulties in accurately identifying true active 
compounds among numerous inactive compounds. The BACC of 
0.690, F1-score of 0.208, MCC of 0.190, and AUC of 0.753 suggest a 
model that is more sensitive than specific.

Cytotox assay: With an imbalance ratio of 1:5, the model 
demonstrated moderate precision (0.379) and high recall (0.699), 
suggesting an effective balance in identifying active compounds. 

The BACC of 0.730, F1-score of 0.491, MCC of 0.374, and AUC of 
0.792 reflect a well-performing model in a moderately imbalanced 
setting.

hCYTOX assay: Here, the ratio of 1:9 posed a moderate difficulty, 
and the model managed a high recall (0.767) but a relatively low 
precision (0.212). The BACC of 0.734, F1-score of 0.332, MCC of 
0.289, and AUC of 0.751 indicate a model that effectively identifies 
active compounds, although with some limitations in precision.

MERS-PPE assay: With an imbalance ratio of 1:3, the model 
performed well, achieving a recall of 0.764 and a precision of 0.426, 
suggesting an effective balance in identifying active compounds. 
The BACC of 0.723, F1-score of 0.547, MCC of 0.384, and AUC of 
0.761 support the model’s good performance.

MERS-PPE-cs assay: An imbalance ratio of 1:11 presented 
challenges. The model exhibited a high recall (0.822) and relatively 
low precision (0.236), indicating sensitivity to active compounds. 
The BACC of 0.763, F1-score of 0.366, MCC of 0.331, and AUC of 
0.803 indicate a model that is more sensitive than specific.

TruHit assay: With a favorable imbalance ratio of 1:2, the model 
delivered a robust performance, especially notable in recall 
(0.813) and precision (0.515), demonstrating its effectiveness in 
discriminating active compounds. The BACC of 0.765, F1-score of 
0.630, MCC of 0.476, and AUC of 0.821 reflect a well-balanced and 
effective model.

Overall, the DNN model performance varied notably across different 
bioassays and was heavily influenced by the imbalance ratio of each 
dataset. Assays with more balanced ratios typically demonstrated 
better precision and overall metric performance. In contrast, assays 
with higher imbalances tended to have higher recall but struggled 
with precision. The BACC, MCC, and AUC values across all assays 
suggest that the model generally performed well, particularly when 
considering the varying degrees of dataset imbalance.

TABLE 3. Prediction Metrics of the Deep Neural Network Model for Test Sets.

Assay BACC Precision Recall F1-score MCC AUC

3CL 0.731 0.075 0.700 0.135 0.172 0.783

ACE2 0.772 0.175 0.846 0.289 0.294 0.842

AlphaLISA 0.803 0.603 0.813 0.692 0.561 0.868

CoV-PPE 0.708 0.730 0.659 0.693 0.417 0.755

CoV-PPE-cs 0.750 0.556 0.675 0.610 0.470 0.799

CPE 0.690 0.121 0.764 0.208 0.190 0.753

cytotox 0.730 0.379 0.699 0.491 0.374 0.792

hCYTOX 0.734 0.212 0.767 0.332 0.289 0.751

MERS-PPE 0.723 0.426 0.764 0.547 0.384 0.761

MERS-PPE-cs 0.763 0.236 0.822 0.366 0.331 0.803

TruHit 0.765 0.515 0.813 0.630 0.476 0.821

BACC, balanced accuracy; MCC, Matthews correlation coefficient; AUC, area under the curve; Precision, positive predictive value; Recall, sensitivity; ACE2, angiotensin-
converting enzyme 2; PPE-cs, pseudotyped particle entry-counter screen; CPE, cytopathic effect; hCYTOX; human fibroblast toxicity; MERS, middle east respiratory 
syndrome.
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DISCUSSION

In drug discovery research, a diverse range of ML algorithms has been 
effectively employed for the activity classification of compounds. 
This aims at extracting valuable insights from bioassay datasets. 
Algorithms, such as Naïve Bayes (NB)20,21, Random forests (RF)22,23, 
k-NN24, support vector machines (SVM)7,25, and DNN6, are commonly 
employed for these classification tasks. A significant challenge in 
handling bioassay datasets, especially those derived from qHTS, 
is their inherent class imbalance. This is typically characterized by 
a substantially higher number of inactive compounds compared 
to active compounds. This imbalance presents a challenge for ML 
models due to the limited data available for the minority class. 
To address this specific challenge, Korkmaz6 explored various 
data balancing methods during the training phase of DNNs. The 
results of this study suggest that the impact of imbalanced data on 
neural network performance can be alleviated by employing data 
balancing methods.

In our study, we used a deep learning approach to test the 
binding activities of 11 anti-SARS-CoV-2 bioassays. We undertook 
a comprehensive trial-and-error process to optimize the model 
architecture, experimenting with various numbers of layers, 
minibatch sizes, epochs, and learning rate levels to identify the most 
effective hyperparameters. We evaluated the model performance by 
selecting performance metrics that reflect the imbalanced nature of 
our datasets, including BACC, F1-score, and MCC.

KC et al.9 analyzed these bioassays in their research by utilizing a 
variety of 24 ML models. These models included the following 
methods: NB, extreme gradient boosting, RF, logistic regression, 
multilayer perceptron, and SVM, alongside 22 types of molecular 
descriptors.9 In contrast, our study focused on developing a 
deep learning model, employing PaDEL software to generate 
a comprehensive set of 1878 molecular descriptors. A notable 
methodological divergence lies in our approach to class imbalance. 
KC et al.9 performed random undersampling to balance the active 
and inactive classes. However, we chose to implement an advanced 
oversampling technique, SMOTE, which creates synthetic samples for 
the minority class. Our DNN model exhibited superior performance 
over the ML classifiers employed by KC et al.,9 particularly in terms of 
accuracy and AUC, underscoring its more robust overall capability.

It is crucial to emphasize the significance of discovering new and 
effective drugs to combat COVID-19, a global health challenge that 
has had profound impacts on society. The development of such 
drugs is not only a matter of immediate health concern but also 
of long-term preparedness for potential future outbreaks. In this 
context, deep learning methods have emerged as invaluable tools 
in the drug discovery process. Their ability to analyze complex 
datasets and uncover patterns that might elude traditional 
analytical methods offers a promising avenue for identifying novel 
active molecules. The capacity of deep learning to handle vast 
and varied data - a common scenario in drug discovery - makes 
it particularly suitable for rapidly evolving scenarios, such as the 
COVID-19 pandemic. By incorporating deep learning techniques, 
researchers can accelerate the identification and validation of 
potential therapeutic candidates, thereby shortening the time from 

laboratory research to clinical trials and eventual public availability. 
The use of these advanced computational approaches not only 
enhances the efficiency of the drug discovery process but also 
increases the likelihood of identifying effective compounds. This, 
in turn, could save lives and mitigate the impacts of the pandemic.

CONCLUSION

This study highlights the pivotal role of deep learning in 
revolutionizing the drug discovery process, especially within the 
scope of the COVID-19 outbreak. By employing sophisticated deep 
learning methods, notably the DNN model augmented with SMOTE 
to address class imbalances, our research demonstrates a marked 
improvement in identifying active compounds from bioassay 
datasets. This approach outperforms conventional ML models, as 
evidenced by comparisons with the work of KC et al.,9 and also plays 
a vital role in addressing the challenges arising from the inherently 
imbalanced characteristics of HTS data. Our results highlight 
the capability of deep learning to expedite the identification of 
effective therapeutic agents against COVID-19. Advocating for the 
broader implementation of advanced computational techniques in 
drug discovery, this study signals progress toward a more efficient, 
precise, and swift identification of potential drugs to address present 
and upcoming health crises.
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