

Massive Resting Shunt on c-TCD: A Clue to Pulmonary Arteriovenous Malformation in a Young Stroke Patient

 Fubo Zhou¹, Ruili Li², Yingqi Xing¹

¹Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China

²Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China

A 17-year-old female teen presented with migraine with visual aura. Brain magnetic resonance imaging demonstrated a hyperintense area on diffusion-weighted imaging with corresponding hypointensity on the ADC adjacent to the right cerebral aqueduct [also hyperintense on fluid-attenuated inversion recovery, indicating an acute ischemic infarction (Figures 1a-c)]. No traditional cerebrovascular risk factors were identified. A right-to-left shunt was considered owing to the combination of early-onset cryptogenic stroke, migraine with aura, and a family history of persistent epistaxis affecting her mother, grandfather, and all four maternal aunts.^{1,2}

Contrast-enhanced transcranial Doppler (c-TCD) was performed following a standardized protocol.³ Briefly, an agitated saline contrast agent (9 mL of isotonic saline, 1 mL of air, and a drop of the patient's blood) was administered intravenously. The bilateral middle cerebral arteries were monitored for 25 s after injection, both at rest and during a Valsalva maneuver. The right-to-left shunt was graded based on the maximum microbubble count using a standard four-level classification: small (< 10 microbubbles); moderate, (11–20 microbubbles); large, (> 20 microbubbles); and “curtain-like” pattern (uncountable microbubbles).⁴ c-TCD examination revealed a “curtain-like” pattern of microbubbles in bilateral middle cerebral arteries immediately and persistently after contrast injection at rest, which was unaffected during the Valsalva maneuver (Figures 1d-i). This finding is highly suggestive of an extracardiac shunt, typically pulmonary arteriovenous malformation (PAVM).⁵ Subsequent computed tomography (CT) angiography confirmed a PAVM in the right lower lobe (Figures 1j and k). Genetic testing identified a pathogenic frameshift variant in *ENG* (c.1097_1100delACGC), confirming the diagnosis of hereditary hemorrhagic telangiectasia (HHT) type 1.²

Paradoxical embolism through the PAVM is the most plausible mechanism for cerebral infarction in this young patient. First, her risk of paradoxical embolism score of 9 indicates a high-risk of stroke from paradoxical embolism.⁵ c-TCD showed immediate, persistent “curtain-like” microbubbles without Valsalva augmentation, a pattern

characteristic of PAVM, which was confirmed by CT angiography.⁶ Second, although she had migraine with aura, the periaqueductal infarct location was atypical for primary migrainous infarction.⁷ Third, small vessel disease was highly unlikely given her age and absence of cerebrovascular risk factors or corresponding imaging results.⁸

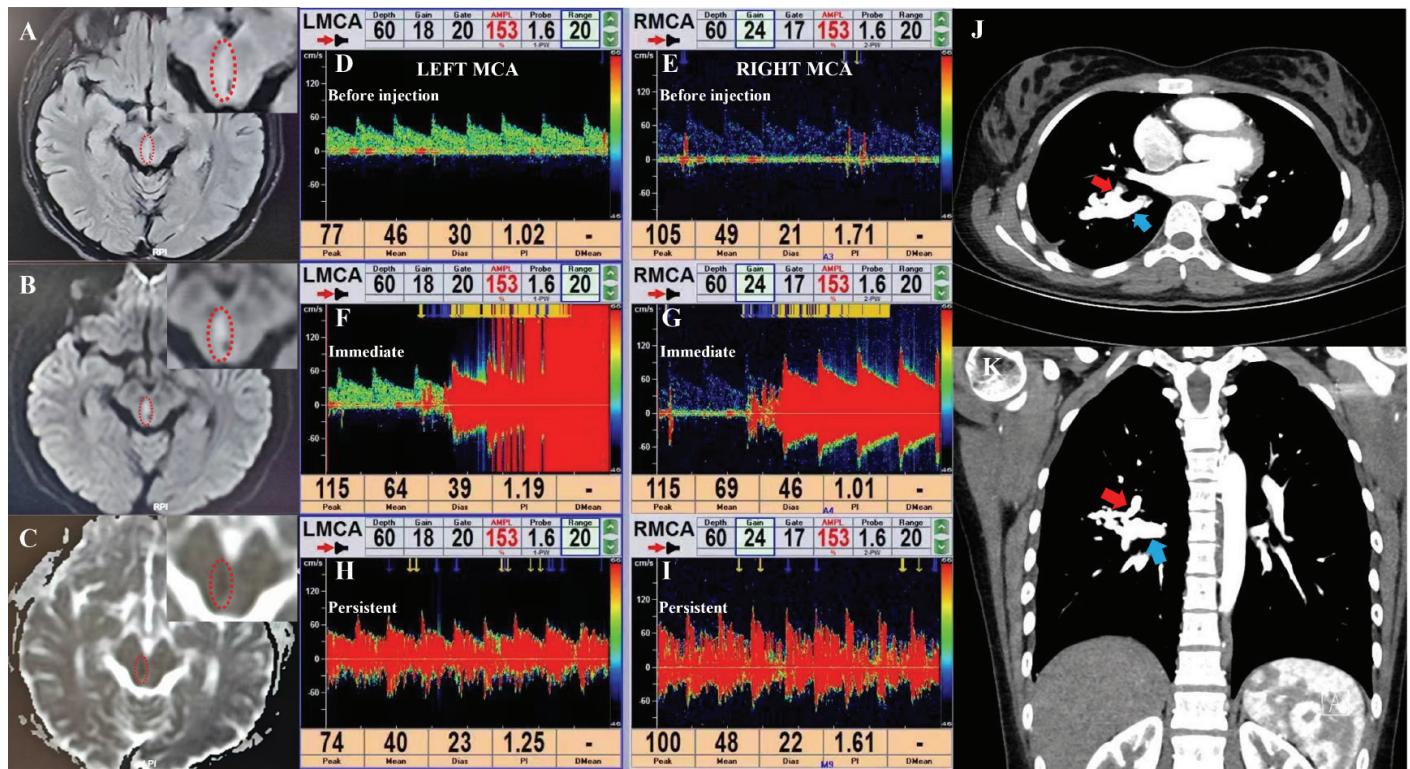
The confirmation of a pathogenic *ENG* variant and diagnosis of HHT type 1 have direct and profound implications for the patient and her family. Patient management includes treating beyond the symptomatic PAVM to encompass systematic screening for other potential vascular malformations (e.g., cerebral and hepatic) and lifelong multidisciplinary follow-up according to HHT guidelines.² Importantly, this genetic diagnosis requires a change in the family care model, allowing for genetic testing for at-risk first-degree relatives. Given the 50% transmission risk of this autosomal dominant disorder, preconception genetic counseling is imperative.⁹ This highlights the essential role of genetic testing in shifting HHT management from reactive to preventive.

After diagnostic assessment, the patient underwent embolization of the PAVM in the right lower lobe. After the procedure, her migraine with visual aura disappeared completely, and she did not experience any neurological symptoms. The one-year radiological follow-up confirmed complete occlusion of the malformation.

HHT, an autosomal dominant genetic disorder, affects approximately 1 in 5000 individuals and is defined by vascular malformations that might lead to complications, such as paradoxical embolization.² PAVM screening in patients and their first-degree relatives is crucial because untreated PAVMs are associated with risk of stroke and other severe complications.¹⁰ Early detection allows for procedures such as embolization to prevent recurrent paradoxical emboli. This case highlights the significance of using c-TCD for PAVM screening in young patients experiencing a stroke, particularly those with migraines, unexplained neurological symptoms, or a relevant family history.

Corresponding author: Yingqi Xing, Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China

e-mail: xingyq@sina.com


Received: December 20, 2025 **Accepted:** January 23, 2026 • **DOI:** 10.4274/balkanmedj.galenos.2026.2025-12-181

Available at [www.balkanmedicaljournal.org](http://balkanmedicaljournal.org)

ORCID iDs of the authors: FZ. 0000-0001-8211-325X; R.L. 0000-0003-4396-2034; Y.X. 0000-0002-7403-5789.

Cite this article as: Zhou F, Li R, Xing Y. Massive Resting Shunt on c-TCD: A Clue to Pulmonary Arteriovenous Malformation in a Young Stroke Patient. Balkan Med J; 2026; 13(1): 1-6.

Copyright@Author(s) - Available online at <http://balkanmedicaljournal.org/>

FIG. 1. Brain MRI, c-TCD, and CT angiography. (a-c) Brain MRI of a right periaqueductal acute infarct (outlined by red dashed lines; magnified views in insets). Signal characteristics: subtle hyperintensity on fluid-attenuated inversion recovery (a), hyperintensity on diffusion-weighted imaging (b), and hypointensity on ADC (c). (d-i) Bilateral MCA c-TCD waveforms at baseline (d, e), immediately after (f, g), and persistently after contrast injection at rest (h, i), showing an immediate and persistent “curtain-like” microbubble pattern. (j, k) CT angiography confirms a right lower lobe pulmonary arteriovenous malformation, showing early contrast filling within the malformation (red arrow) and dilated draining pulmonary veins (blue arrow). MRI, magnetic resonance imaging; CT, computed tomography; c-TCD, contrast-enhanced transcranial Doppler.

Acknowledgments: The authors thank the staff in the Department of Vascular Ultrasonography, Xuanwu Hospital for their valuable help. Graphical abstract was drawn by Figdraw.

Informed Consent: Informed consent was obtained from the patient and her legal guardian for the publication of this case and accompanying images.

Authorship Contributions: Concept- Y.X.; Design- Y.X., F.Z.; Supervision- Y.X.; Fundings- Y.X.; Materials- F.Z., R.L., Y.X.; Data Collection or Processing- F.Z., R.L., Y.X.; Analysis and/or Interpretation- F.Z., R.L.; Literature Review- F.Z., R.L.; Writing- F.Z.; Critical Review- Y.X.

Conflict of Interest: No conflict of interest was declared by the authors.

Funding: This study was funded by the Noncommunicable Chronic Diseases-National Science and Technology Major Project of China (No. 2024ZD0521601) and 2025 Xuanwu Hospital Talent Convergence Program (No. HZ2025PYLJ007).

REFERENCES

1. Caso V, Turc G, Abdul-Rahim AH, et al. European Stroke Organisation (ESO) Guidelines on the diagnosis and management of patent foramen ovale (PFO) after stroke. *Eur Stroke J*. 2024;9:800-834. [\[CrossRef\]](#)
2. Faughnan ME, Mager JJ, Hetts SW, et al. Second International Guidelines for the diagnosis and management of hereditary hemorrhagic telangiectasia. *Ann Intern Med*. 2020;173:989-1001. [\[CrossRef\]](#)
3. Yang Y, Guo ZN, Wu J, et al. Prevalence and extent of right-to-left shunt in migraine: a survey of 217 Chinese patients. *Eur J Neurol*. 2012;19:1367-1372. [\[CrossRef\]](#)
4. Zetola VF, Lange MC, Scavasine VC, et al. Latin American Consensus Statement for the use of contrast-enhanced transcranial ultrasound as a diagnostic test for detection of right-to-left shunt. *Cerebrovasc Dis*. 2019;48:99-108. [\[CrossRef\]](#)
5. Kent DM, Ruthazer R, Weimar C, et al. An index to identify stroke-related vs incidental patent foramen ovale in cryptogenic stroke. *Neurology*. 2013;81:619-625. [\[CrossRef\]](#)
6. Manawadu D, Vethanayagam D, Saqrur M, et al. Screening for right-to-left shunts with contrast transcranial Doppler in hereditary hemorrhagic telangiectasia. *Stroke*. 2011;42:1473-1474. [\[CrossRef\]](#)
7. Coppola G, Di Lorenzo C, Parisi V, et al. Clinical neurophysiology of migraine with aura. *J Headache Pain*. 2019;20:42. [\[CrossRef\]](#)
8. Rutten-Jacobs LCA, Markus HS; UK Young Lacunar Stroke DNA Study. Vascular risk factor profiles differ between magnetic resonance imaging-defined subtypes of younger-onset lacunar stroke. *Stroke*. 2017;48:2405-2411. [\[CrossRef\]](#)
9. Watkins VY, Estin ML, Craig AM, Dotters-Katz SK, Federspiel JJ. Hereditary hemorrhagic telangiectasia: pregnancy and delivery-specific considerations and outcomes. *Am J Perinatol*. 2025;42:564-571. [\[CrossRef\]](#)
10. Topiwala KK, Patel SD, Saver JL, Streib CD, Shovlin CL. Ischemic stroke and pulmonary arteriovenous malformations: a review. *Neurology*. 2022;98:188-198. Erratum in: *Neurology*. 2022;98:864. [\[CrossRef\]](#)