Background: The receptors of salmon calcitonin, located on certain areas of the brain such as the periaqueductal gray matter, are responsible for pain modulation.
Aims: The effects of intracerebroventricular injection of salmon calcitonin on the behavioral response to pain and on the levels of monoamines in the periaqueductal gray were explored using a biphasic animal model of pain.
Study Design: Animal experiment.
Methods: A total of 45 male rats were divided into four groups (n=6). Salmon calcitonin was injected into the lateral ventricle of the brain (1.5 nmol, with a volume of 5 μL). After 20 min, 2.5% formalin was subcutaneously injected into the right leg claw, and pain behavior was recorded on a numerical basis. At the time of the formalin test, the periaqueductal gray area was microdialized. High-performance liquid chromatography method was used to gauge the levels of monoamines and their metabolites.
Results: Intracerebroventricular injections of salmon calcitonin resulted in pain reduction in the formalin test (p<0.05). The dialysate concentrations of serotonin, dopamine, norepinephrine, 5-hydroxyindoleacetic acid, 3,4-dihydroxyphenylacetic, and 4-hydroxy-3-methoxyphenylglycol increased in the periaqueductal gray area in different phases of the formalin pain test (p<0.05).
Conclusion: Salmon calcitonin reduced pain by increasing the concentrations of monoamines and the metabolites derived from them in the periaqueductal gray area.