Background: Transplantation of fetal mesencephalic tissue is a well-established concept for functional reinnervation of the dopamine-depleted rat striatum. However, there is no extensive description of the glial response of the host brain following this procedure.
Aims: The present study aimed to quantitatively and qualitatively analyse astrogliosis surrounding intrastriatal grafts and compare it to the reaction to mechanical injury with the transplantation instrument only.
Study Design: Animal experimentation.
Methods: The standard 6-hydroxydopamine-induced unilateral model of Parkinson’s disease was used. The experimental animals received transplantation of a single-cell suspension of E14 ventral mesencephalic tissue. Control animals (sham-transplanted) were subjected to injury by the transplantation cannula, without injection of a cell suspension. Histological analyses were carried out 7 and 28 days following the procedure by immunohistochemistry assays for tyrosine hydroxylase and glial fibrillary acidic protein. To evaluate astrogliosis, the cell density and immunopositive area were measured in distinct zones within and surrounding the grafts or the cannula tract.
Results: Statistical analysis revealed that astrogliosis in the grafted striatum increased from day 7 to day 28, as shown by a significant change in both cell density and the immunopositive area. The cell density increased from 816.7±370.6 to 1403±272.1 cells/mm2 (p<0.0001) аnd from 523±245.9 to 1164±304.8 cells/mm2 (p<0.0001) in the two zones in the graft core, and from 1151±218.6 to 1485±210.6 cells/mm2 (p<0.05) for the zone in the striatum immediately adjacent to the graft. The glial fibrillary acidic protein-expressing area increased from 0.3109±0.1843 to 0.7949±0.1910 (p<0.0001) and from 0.1449±0.1240 to 0.702±0.2558 (p<0.0001) for the same zones in the graft core, and from 0.5277±0.1502 to 0.6969±0.1223 (p<0.0001) for the same area adjacent to the graft zone. However, astrogliosis caused by mechanical impact only (control) did not display such dynamics. This finding suggests an influence of the grafted cells on the host’s glia, possibly through cross-talk between astrocytes and transplanted neurons.
Conclusion: This bidirectional relationship is affected by multiple factors beyond the mechanical trauma. Elucidation of these factors might help achieve better functional outcomes after intracerebral transplantation.
Ever since the first experiments with intracerebral transplantation of nervous tissue, the graft-host interface has been recognised as a site at which important processes of interaction and integration occur between the transplanted cells and the host brain (1-3). Astroglia play a major role in the events that occur at this interface. Astrocytes of the host brain tissue not only delineate the grafts, but also show activation some distance from their borders. Introduction of the transplantation instrument also induces activation of the astroglia (4) due to tissue trauma. Even though the gliotic reaction to both interventions is similar, no comparison between the relative contribution of transplanted cells and trauma to astroglial scarring has been undertaken until now.
Reducing tissue injury during transplantation in Parkinson’s disease is shown to reduce glial activation. At the same time, the extent of glial scarring surrounding the graft is negatively correlated with the number of integrated neurons (5). This correlation, however, has not been proven to be causative. It is not clear if more pronounced astrogliosis leads to poorer neuronal integration, or whether both events occur secondary to greater tissue trauma. On one hand, the glial scar could act as a mechanical barrier for neurites, preventing them from reinnervating the host brain. This has been demonstrated in a number of spinal trauma experiments (6-9). However, astrocytes provide support for outgrowing axons (2). Glial scar tissue is known to contain growth-promoting molecules such as laminin and fibronectin (10). Any disruption might deprive the neurons of this support, thereby exacerbating the tissue injury (11). Despite there being numerous reports in the literature focussed on central nervous system (CNS) trauma, the glial reaction to grafting is poorly understood. Specifically, it is not clear how the glial scar tissue surrounding the grafts interacts with the transplanted cells. Moreover, there has been no extensive description of astrogliosis in response to intracerebral transplantation in a model of Parkinson's disease. The aim of the present study was to analyse the astrocytic reaction following transplantation of embryonic mesencephalic tissue in a model of Parkinson's disease. This study provides quantitative and qualitative descriptions of the astroglial reaction to grafting and compares it with the reaction following a mechanical injury only.