Background: Targeted therapies directed at tumor immune checkpoint, like programmed death-ligand (PD-L)1/programmed death (PD)-1, have shown remarkable progress. Nevertheless, treatment efficacy in hepatocellular carcinoma (HCC) is notably compromised due to the intricate immune microenvironment. Exploring alternative checkpoints beyond PD-L1/PD-1, including those not located on the cell surface, may improve our understanding of their roles in areas like diagnostic potential and immune tolerance in HCC.
Aims: To explore the roles of serum exosomal CD155 (exo-CD155) in HCC.
Study Design: Experimental study.
Methods: We separated and analyzed serum exosomes from HCC patients. We quantified the concentrations of serum soluble CD155 (sCD155) and serum exo-CD155, and examined their association with disease progression, hepatitis B surface antigen (HBsAg) presence, and the concentrations of α-fetoprotein fraction L3 (AFP-L3) or alpha-fetoprotein (AFP). Additionally, we assessed the diagnostic effect through the receiver operating characteristic (ROC) curve, and the immune suppressive effect on natural killer (NK) cells of exo-CD155.
Results: This study reveal elevated exo-CD155 levels in all HCC patients, with a significant increase in early-stage patients, exhibiting normal AFP/AFP-L3 or HBsAg-positive status. Exo-CD155 is linked to the progression of HCC and shows significant diagnostic effectiveness for the disease. Furthermore, the incubation of NK-92MI with exosomes derived from HCC patients leads to a substantial reduction in immune function, which can be partially counteracted with an antibody that blocks T cell immune receptor immunoglobulin and ITIM domains, (TIGIT)-blocking antibody.
Conclusion: These results disclose exo-CD155 shows promise for serving as a biomarker for HCC, especially in early-stage patients or those with normal AFP/AFP-L3 levels. Moreover, serum exosomes from HCC patients suppress NK cell immune functions through the TIGIT/CD155 pathway, contributing to immune tolerance in HCC.